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Section 1. Ultrafilters and Logic

Ultrafilters can be seen in a variety of places around mathematics, especially within set theory. For our purposes,
ultrafilters give rise to ultraproducts, and certain ultraproducts result in inner models. e existence and structure
of these inner models give rise to deep results about the original universe we start in, and they present important
connections to large cardinal assumptions and consistency strength.

§1A. Filters

e notion of a filter over a set makes precise the notion of largeness as well as “almost every”. Its association with
measure also leads to saying a set is “measure one” to mean that it is in the filter, alluding to measuring subsets of
Œ0; 1� � R similar to probability. is way of referring to sets in a filter F � P .X/ is motivated by the idea that if
x 2 P .X/ is “large” and x � y 2 P .X/, then y is “large” too. is leads to the following definition.

1A • 1. Definition
LetA ¤ ; be a set. A filter overA is a non-empty subsetF ¨ P .A/ such that the following hold: for all x; y 2 P .A/,

1. If x 2 F and x � y, then y 2 F ; and
2. If x; y 2 F , then x \ y 2 F .

An ultrafilter over A is a �-maximal filter U � P .A/.

Other references will often require A 2 F � P .A/ and ; … F , but these are implied by (1) and that F ¤ ; is a proper
subset F ¨ P .A/. Without this requirement, we’d have trivial filters like all of P .A/, or just ;. We wouldn’t want to
allow such sets to be filters, because it would muck with the definition of ultrafilters.

To help grasp the concept a bit more, we have some relatively easy examples of filters.
1A • 2. Example
1. Let A ¤ ; be any set with a 2 A. erefore ¹x 2 P .A/ W a 2 xº is a filter, and in fact an ultrafilter.
2. Let A ¤ ; be any set with ; ¤ x ¨ A. erefore ¹y 2 P .A/ W x � yº is a filter, but not an ultrafilter unless
x is a singleton.

3. Suppose A is infinite. erefore ¹x 2 P .A/ W A n x is finiteº is a filter, but not an ultrafilter.
4. Let � be an uncountable, regular cardinal. Call x � � a club iff sup x D �, and for all bounded y � x,

supy 2 x. erefore ¹x 2 P .�/ W x contains a club of �º is a filter called the club filter, but it is not an
ultrafilter.

e first is in effect the most trivial kind of filter, and it is something we will try to avoid. Note that we can come
up with all sorts of filters. First we just start with a family of non-pairwise-disjoint sets X , and then we close under
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intersections and supersets. is yields a filter containing X . So this is the process by which we constructi ultrafilters:
just keep adding a set or its complement until we can’t anymore.

For now, let’s try to generate more examples of filters. To do this, we need to be somewhat careful. e general idea
is to simply close a given set under finite intersections, and then add all supersets. e issue with this is that we need
to ensure that we don’t accidentally end up with ; after intersecting a bunch of elements. Otherwise ; would be in our
filter, and after closing upwards under �, we’d end up with the full powerset. Luckily, this is the only obstruction to
generating a filter.

1A • 3. Definition
A set X has the finite intersection property iff for all finite subsets ¹x0; � � � ; xnº � X ,

T
i�n xi ¤ ;.

1A • 4. Result
Let A ¤ ; be a set, and let X � P .A/ have the finite intersection property. erefore there is a filter F � X .

Proof .:.
Consider the closure Y ofX under pairwise intersections. By the finite intersection property, ; … Y . Now define
F D ¹x 2 P .A/ W 9y 2 Y.y � x/º. As ; … Y , ; … F and hence F ¨ P .A/. F is clearly closed under supersets
and pairwise intersection because Y is. Hence F is a filter with X � Y � F . a

e filter given in the proof is generated by X not just in the sense that the construction is given by X , but also in the
sense that it is the �-minimal filter containing X . Now the question becomes how to generate an ultrafilter. Without
AC, the situation is a bit odd and differentii, but in our case, every filter can be extended to an ultrafilter. e proof of
this can be easily shown through Zorn’s lemma: consider the set of filters containing F , and for each �-chain, just
take the union to get another filter, and end up with a �-maximal filter U � F .

e characterization of ultrafilters just as maximal filters is useful to prove their existenceiii, but for the most part, it
doesn’t help one understand properties of ultrafilters. A much more useful characterization is the following.

1A • 5. Result
Let U � P .A/ be a filter. erefore U is an ultrafilter iff for all x 2 P .A/, either x 2 U or A n x 2 U .

Proof .:.
Suppose U contains every subset of A or its complement, but there is some other filter with U ¨ F ¨ P .A/.
Take x 2 F n U and note that we must have A n x 2 U � F . Since F is a filter, ; D x \ .A n x/ 2 F which
implies F D P .A/, a contradiction.

Now suppose U is an ultrafilter. Let x � A be such that x;A n x … U . Consider the set X D ¹u n x W u 2 U º
which contains A n x, for example. Note ; … X since otherwise u n x D ; for some u 2 U , meaning u �
x 2 U . erefore X has the finite intersection property because U does. So let F be the filter generated by X :
F D ¹y � X W 9z 2 F .z � y/º. is contains U , contradicting that U is maximal: x 2 F n U . a

We will only be interested in ultrafilters over infinite sets, since the only ultrafilters over finite sets are principal: for U
an ultrafilter over N 2 !, each m 2 N has some Xm 2 U with m … Xm. erefore, intersecting these finitely many
sets yields

T
m<N Xm D ; 2 U , contradicting that U is a filter.

§1B. Background on Clubs

Without loss of generality, we will consider filters on infinite cardinals. is somewhat simplifies the notation and
situation, but it is a primer for later ideas which work directly with concepts related to cardinals. Example 1A • 2 (4)
already contains an example of how working cardinals can give additional information. is example also includes
the notion of a club, being a closed and unbounded subset. ese sets have further properties that can be connected to

iChoice is needed to show the existence of (nonprincipal) ultrafilters, so it's not exactly an explicit construction.
ii ings being odd is usually the case without AC. In particular, the existence of non-principal ultrafilters cannot be proven without AC.
iiiand it's the only definition that works if you define filters for posets in general rather than just for the poset hP .A/; �i
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ultrafilters later. First we repeat a definition.
1B • 1. Definition

Let � be an uncountable, regular cardinal.
A subset x � � is club in � or a club iff x [ ¹�º is closed under supremum of subsets and sup x D �.
Let ¹x˛ W ˛ < �º be a family of sets indexed by � 2 Ord. e diagonal intersection of this family is

4
˛<�

x˛ ��D
®
˛ < � W ˛ 2

T
ˇ<˛ x˛

¯
.

e diagonal intersection is important because the set of clubs is closed under diagonal intersections of length �. is
cannot be strengthened to full intersections, however. To see this, for each ˛ < �, take the clubC˛ D ¹ˇ < � W ˛ < ˇº.
is gives that

T
˛<� C˛ D ;. e diagonal intersection, however, will still be a club, and in fact will be � itself: for

every ˛ < �, ˛ 2
T

ˇ<˛ Cˇ .

1B • 2. Result
Let � be an uncountable, regular cardinal. Let ¹C˛ W ˛ < �º be a collection of clubs. erefore

1. For each � < �,
T

˛<� C˛ is a club.
2. 4˛<� C˛ is a club.

Proof .:.
1. Let � < � be given. First we will show that

T
˛<� C˛ is unbounded. So let  < � be arbitrary. Since � is

regular, choose an increasing sequence of x˛s such that each x˛ 2 C˛ and  < x0. Now we have a sequence
hx˛ W ˛ < �i D hx0C˛ W ˛ < �i. Set x�C0 > sup˛<� x0C˛ , and again choose an increasing sequence as
before: x�C˛ 2 C˛ . In the end, we get an interlaced, increasing sequence X D hx��nC˛ W n < ! ^ ˛ < �i

where x��nC˛ 2 C˛ for each ˛ < �. Notice that as the sequence was interlaced and increasing, each C˛ slice
for ˛ < � has the same supremum:

sup.X \ C˛/ D sup¹x��nC˛ W n 2 !º D supX .
Hence this supremum is in

T
˛<� C˛ , and is bigger than  . us the intersection is unbounded.

To see that
T

˛<� C˛ is closed, any bounded subset Y �
T

˛<� C˛ has Y � C˛ for each ˛ < �. Yet
supY 2 C˛ by the hypothesis, for each ˛ < �, implying that supY 2

T
˛<� C˛ as desired.

2. We will again show that4˛<� C˛ is unbounded, as closure is the easier of the two. Let  < � be arbitrary.
Choose an increasing sequence hxn >  W n < !i with x0 2 C0 n  and xnC1 2

T
˛<xn

C˛ . is can be done
since each

T
˛<xn

C˛ is club by (1). Now write X D ¹xn W n 2 !º with x D supX .

To see that x 2 4˛<� C˛ , we just need to see that x 2
T

˛<x C˛ . For each ˛ < x, ˛ � xm for some m,
which means the tail of X is contained in C˛:

¹xn W n > mº �
T

ˇ<xm
Cˇ � C˛ .

erefore x D supX 2 C˛ and hence x 2
T

˛<x C˛ .

To see that 4˛<� C˛ is closed, let X �  be a bounded subset of it with x D supX . Note that for any
˛ < �, we have X n ˛ �

T
ˇ<˛ Cˇ . In particular, for ˛ < x, the tail of X is a subset of C˛ and hence

x D supX 2 C˛ . erefore x 2
T

˛<x C˛ and so x 24˛<� C˛ . a

e importance of the diagonal intersection is primarily for the purpose of Fodor’s lemma, whichmotivates an important
property for filters. Fodor’s lemma talks about stationary sets: sets which intersect every club set, but which might not
be clubs themselves.

1B • 3. Definition
Let � be an uncountable, regular cardinal. A subset X � � is stationary iff C \X ¤ ; for every club C � �.

e existence of stationary sets is easy to see just from the fact that every club set is stationary: � itself is trivially a
stationary subset of �. e existence of stationary, co-stationary subsets—i.e. stationary subsets that do not contain a
club—can be shown through direct example. Since � > ℵ0, we can consider S�

! D ¹˛ < � W cof.˛/ D !º. It’s clear
that S�

! is stationary, since each club contains a sequence of length !, whose supremum is then in S�
! since � > ℵ0
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is regular. More generally, the set S�
�
of ordinals with cofinality � will be stationary whenever � < � is regular for

precisely the same reason as with !.
1B • 4. Definition

Let X � Ord and let f W X ! Ord. f is regressive iff f .˛/ < ˛ for all ˛ 2 X .

1B • 5. Lemma (Fodor's Lemma)
Let � be an uncountable, regular cardinal. Let S � � be stationary, and let f W S ! � be regressive.
erefore f is constant on a stationary set: f �1"¹ˇº is stationary for some ˇ 2 S .

Proof .:.
Otherwise for each ˇ < �, let Cˇ \f

�1"¹ˇº D ; with Cˇ a club. Consider4ˇ<� Cˇ , which is a club by Result
1 B • 2, and hence S \4ˇ<� Cˇ ¤ ;. Taking ˛ 2 S \4ˇ<� Cˇ requires that f .˛/ < ˛. But note that

f �1"¹ˇº \ Cˇ � f
�1"¹ˇº \

T
<˛ C D ;

for each ˇ < ˛. In particular, for ˇ D f .˛/ < ˛, ˛ 2 f �1"¹f .˛/º has ˛ …
T

<˛ C , contradicting that
˛ 24ˇ<� Cˇ . Hence there must be some ˇ with f �1"¹ˇº stationary, meaning that f is constant on a stationary
set. a

Such a result is extremely useful for combinatorial parts of set theory, being used to prove statements like the generalized
Δ-system lemma, tremendously useful in methods of forcing. Stated in terms of filters, any ultrafilter extending the
club filter will necessarily contain only stationary sets, and thus will abide by Fodor’s Lemma (1B • 5). is is a nice
property of ultrafilters for various reasons, as will be covered later.

§1C. Logic and filters

Now as stated above, filters and ultrafilters give a notion of “size” or “largeness” to subsets, but they also then give
a notion of “how often” something is in a given subset. In this way, as with a probability measure, ultrafilters give a
notion of how often something is true. To make this connection a little more apparent, the following notation will be
used extensively.

1C • 1. Definition
Let F be a filter over a set K. Let '.x; Ew/ be a formula. Write “8�x '.x; Ew/” to say that ¹x 2 K W '.x; Ew/º 2 F .
We write 9�x '.x; Ew/ to say that K n ¹x 2 K W '.x; Ew/º … F , i.e. :8�x :'.x; Ew/.

8� should be read as “for almost every”, and 9� doesn’t have a standard phrase, but one can read it as “there is a positive
set”, analogous to measure on the real numbers as if to say it’s not measure 0. If we need to specify the ultrafilter, we
write 8�

U for “for U -almost every”. In everyday language, words and phrases like “almost every”, “by-and-large”,
and “many” come into play to gloss over details. ese words are usually vague or ambiguous, but the notion of an
ultrafilter makes them precise in a way that is consistent with ordinary usage. Moreover, the new quantifiers have their
own sort of logic to them based just on Definition 1A • 1. is new vocabulary dramatically simplifies some proofs, and
is overall a better way of thinking about ultrafilters, as well as their properties. Definitions that may seem unmotivated
or hard to understand can become more intuitive and natural with the new logical framework.

It’s useful to present some easy results about how this quantifier interacts with the other connectives of first order logic.
Note that the two properties of Definition 1A • 1 can be restated as

1. If 8�˛ ' and 8˛ .' !  /, then 8�˛  ; and
2. If 8�˛ ' and 8�˛  , then 8�˛ .' ^  /.
is isn’t difficult to see if we allow parameters, since '.˛; x/ might just be ˛ 2 x and  .˛; y/ might just be ˛ 2 y.

Regardless, these immediately give the following. As a result of the results to follow, (1) above can be weakened so
that if 8�˛ ' and 8�˛ .' !  /, then 8�˛  .

1C • 2. Result
Let U be a filter over set K. Let ' and  be formulas, possibly with parameters. erefore

1. 8�x ' ! 9�x '. e two are equivalent for U an ultrafilter.
2. :8�x :' $ 9�x '.
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3. .8�x ' ^ 8�x  /$ 8�x .' ^  /;
4. .9�x ' _ 9�x  /$ 9�x .' _  /;
5. 9y 8�x ' implies 8�x 9y ';
6. 8�x 8y ' implies 8y 8�x '; and
7. 8x ' implies 8�x ', which implies 9�x ', which implies 9x '.

Proof .:.
1. Suppose ¹x 2 K W '.x/º 2 U . If :9�x ' then K n ¹x 2 K W '.x/º 2 U . By closure under intersections,

this would imply ; 2 U , a contradiction. For the other direction, suppose 9�x ', meaning K n ¹x 2 K W
'.x/º … U . By Result 1A • 5, this means the complement ¹x 2 K W '.x/º 2 U , meaning 8�x '.

2. We have that :8�x :' iff ¹x 2 K W :'.x/º D K n ¹x 2 K W '.x/º … U iff 9�x '.
3. e ‘ ’ direction is immediate since filters are closed under supersets: 8x .'^ ! '/ and 8�x .'^ /

implies 8�x ' and similarly for  . For the ‘!’ direction, use that filters are closed under intersections.
4. is is (3) used with the fact that :.' ^  / is equivalent to :' _ : /.
5. is is just from basic first-order logic: if there is a y such that ¹x 2 K W '.x; y/º 2 U then as a superset,
¹x 2 K W 9y '.x; y/º 2 U .

6. If 8�x 8y ', then ¹x 2 K W 8y '.x; y/º 2 U . is set is contained in ¹x 2 K W '.x; y/º for any given y,
meaning that for every y, ¹x 2 K W '.x; y/º 2 U . Hence 8y 8�x '.

7. ese implications are is clear: K 2 U so8x ' implies ¹x 2 K W '.x/º D K 2 U . e second implication
is from (1). e third implication follows from K 2 U : if 9�x ' then K n ¹x 2 K W '.x/º … U . But
:9x ' would imply K D K n ¹x 2 K W '.x/º … U , a contradiction. a

e weakness of (5) and (6) cannot be improved in general, since
• 8�˛ 9x .x D ˛/ doesn’t satisfy 9x 8�˛ .x D ˛/ unless U is principal; and
• Often 8ˇ 8�˛ .˛ > ˇ/—i.e. almost everything is bigger than any particular ˇ—but we likely won’t have
8�˛ 8ˇ .˛ > ˇ/—i.e. almost every ˛ is bigger than everything.

To find specific examples where this happens, we need to consider some particular properties of ultrafilters. Note that
when considering ultrafilters, (1) implies that we don’t need the notation of 9�. But the two are distinct for filters. For
example, the filter of measure one subsets of Œ0; 1� � R has that 9�x .0 � x � 1=2/ but clearly :8�x .0 � x � 1=2/.

§1D. Ultrafilter properties

With all of this logical notation at our disposal, we can more easily state some definitions.
1D • 1. Definition

Let � be a cardinal, and let U be a filter over �.
• U is uniform iff jxj D � for every x 2 U .
• U is unbounded iff for every ˇ < �, 8�˛ .˛ > ˇ/.
• U is normal iff for every f such that 8�˛ .f .˛/ < ˛/ there is some ˇ < � with 9�˛ .f .˛/ D ˇ/.
• U is �-complete iff U is closed under< �-intersections: for  < � and formulas '� for � <  ,

V
�< .8

�˛ '�/

iff 8�˛ .
V

�< '�/. Equivalently, for  < �, ¹X˛ W ˛ < º � U implies
T

˛< X˛ 2 U .

e club filter over a regular, uncountable cardinal will have all of these properties, for example, although it isn’t an
ultrafilter.

1D • 2. Example
Let � be an uncountable, regular cardinal. Let Club� be the club filter over � (the filter generated by closed, un-
bounded [i.e. club] subsets of �). erefore Club� is uniform, unbounded, normal, and �-complete.
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Proof .:.
Obviously all club sets are unbounded, and so by regularity of �, each club has cardinality �. So Club� is uniform.
at Club� is normal is just Fodor’s lemma, since each element of Club� contains a club and is thus stationary.

In other words, Fodor’s Lemma (1B • 5) tells us a regressive f is constant on a stationary set which is therefore
Club�-positive: the complement doesn’t contain a club. �-completeness follows from facts about club sets (clo-
sure of the intersection is immediate, and for unboundedness, interlace a �-length sequence of members in the
� < � clubs and take the supremum which is in all the clubs). a

Many of the properites of Definition 1D • 1 are connected as shown below for ultrafilters over a cardinal �. Implications
are denoted with arrows (a dashed arrow denotes the implication merely of the existence of an ultrafilter with both
properties). If � is regular, unboundedness is equivalent to uniformity, which is otherwise stronger.

�-complete

uniform unbounded

normal

normal and unbounded

for regular �

1D • 3. Figure: Properties of non-principal ultrafilters over � � @0

Arguably the most difficult of the properites in Figure 1D • 3 to achieve is normality, which isn’t directly implied by
any combination of the other properties. However the strongest two properties here are clearly �-completeness and
normality. is combination is important enough to get its own name.

1D • 4. Definition
Let � be an uncountable cardinal with U a non-principal ultrafilter over �. We say that U is a measure iff U is
�-complete and normal.

We call this a measure as motivated from the fact that the function

�.X/ ��D

´
1 if X 2 U
0 if X … U

is a �-additive, two-valued, probability measure over �. Other authors often drop the requirement of normality in the
definition of a measure (which makes sense with this motivation), but then always work with normal measures.

What this definition tells us is that the dashed arrowof Figure 1D • 3 means that if � has a �-complete, non-principal
ultrafilter, then it also has a measure. Another notable property of �-completeness is that it implies that � is regular.
To see this, since it implies unboundedness, if hˇ W ˇ < cof.�/i is unbounded with cof.�/ < �, then the infinitary
conjunction

V
ˇ<cof.�/ 8

�˛ .˛ > ˇ / implies 8�˛ .˛ > ˇ for all ˇ < cof.�//, which contradicts that the sequence
of ˇ s is unbounded in �.

e two difficult arrows in Figure 1D • 3 are that �-complete, non-principal ultrafilters yield measures, and that un-
bounded, normal, non-principal ultrafilters are measures. e second of these is easier.

1D • 5. Result
Let � be an uncountable cardinal with U an unbounded, normal ultrafilter over �. erefore U is �-complete, and
hence a measure.

Proof .:.
Let ¹X˛ W ˛ < �º 2 P .U /. If

T
˛<�X˛ … U , we may assume without loss of generality that

T
˛<�X˛ D ;. So

define f W � ! � to be such that f .˛/ is the least � < � with ˛ … X� . As � < �, f "� is bounded in � and thus
(as U is unbounded),

8
�˛ .˛ > sup.f "�// implies 8�˛ .˛ > f .˛//.

So f is regressive on a set in U . By normality, there is then a ˇ < � with 8�˛ .f .˛/ D ˇ/. But this means
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8�˛ .˛ … Xˇ /, contradicting that Xˇ 2 U . a

Normality is kind of a weird definition, but its usefulness will become more apparent as we investigate ultrapowers
and elementary embeddings. Really, one should think of the dashed arrow of Figure 1D • 3 as being a property of �
rather than of the ultrafilters. We could still prove now, without reference to later material, the dashed arrow: we can
get normal ultrafilters through possibly different �-complete ultrafilters. However, the proof of this with our current
understanding is not the best proof as it is fairly technical without additional concepts. But with later material, the idea
becomes much more natural.

It should be noted that the existence of measures isn’t provable just from ZFC. e reason for this is that any � which
admits such a measure, called ameasurable cardinal, will be quite large. Wewill see later that they will be inaccessible,
for example, and thus can’t be shown to exist just from ZFC. But they will be much more and much larger than mere
inaccessibles. To further investigate measurable cardinals, it is useful to take a look at ultrapowers and elementary
embeddings.
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Section 2. Ultrapowers and Elementary Embeddings

At this point, we can get to our first true application of filters. Ultraproducts are a model-theoretic notion which serve
two purposes. Firstly, they are a sort of average of the starting models: what’s true in the ultraproduct is what’s “almost
always” true in the models. Secondly, they are a way to enlarge the universe: the ultraproduct using just one universe
yields an elementary embedding. e usefulness for set theory comes when the ultraproduct is well-founded so that it
may be collapsed down into an inner model.

In model theory, there is a general concept of a reduced product where you kind of “average out” a set of models over
a filter. We will not be so concerned with general reduced products, since we will be focused on ultrafilters. e idea
is that your objects are now sequences of elements in these models, and a statement '. Ef / is true iff for almost every
˛, '. Ef .˛// is true in the corresponding model. So in particular, a sentence is true iff it is true in “most” of the models.
e result is an ultraproduct instead of a mere reduced product. Even still, we will not be concerned with ultraproducts

in general, but ultraproducts where the models we’re “averaging” are all the same model.
2 • 1. Definition

Let � be a signature. Let A be an first-order logic model for � . Let U be an ultrafilter over a set K.
For f; g W K ! A, say f � g iff 8�x .f .x/ D g.x//. e ultrapower of A by U is the structure Ult.A; U /

• with universe Œf �U D ¹g W f � gº;
• � -relation interpretations RUlt.A;U /.Œ Ef �/ iff 8�x RA. Ef .x//; and
• � -function interpretations F Ult.A;U /.Œ Ef �/ D Œg� iff 8�x .F A. Ef .x// D g.x//.

One should check that these are actually well-defined, but this is easy given that U is an ultrafilter. is, however, is
not very difficult as filters are closed under finite intersections.

What’s happening here is that the choice of what is true at the level of atomic formulas is left up to the ultrafilter:
what happens often enough in the factors happens in the ultraproduct. is goes through to all levels of first-order
formula complexity, as shown in the following indispensable theorem known as Łoś’s eorem. e theorem fully
characterizes first-order truth in ultrapowers based on first-order truth in the factors. As the name “Łoś” is Polish, it is
pronounced [ˈwɔɕ]. Also note that the statement of the theorem here uses only one parameter x in '.x/, but the result
actually allows for arbitrarily many: '.Ex/. is would clutter notation for the proof, which essentially the same either
way.

2 • 2. Theorem (Łoś's Theorem)
Let � be a signature. Let A be an first-order logic model for � . Let U be an ultrafilter over K, and write Ult for
Ult.A; U /.
Let '.x/ be an first-order formula in the signature � , and let Œf � 2 Ult be a parameter.
erefore Ult � '.Œf �/ iff 8�xŒA � '.f .x//�.

Proof .:.
Write Ult for Ult.A; U /. is is a proof by structural induction on '. For atomic formulas, this is just by definition.
Sentential connectives ^ and : follow easily as well, since U is an ultrafilter:

Ult � “:'.Œf �/” iff Ult 6� “'.Œf �/” iff :8
�x .A � “'.f .x//”/

iff 8
�x .A 6� “'.f .x//”/ iff 8

�x .A � “:'.f .x//”/.
Ult � “'.Œf �/ ^  .Œf �/” iff Ult � “'.Œf �/” and Ult � “ .Œf �/”

iff 8
�x
�
A � “'.f .x//”

�
^ 8

�x
�
A � “ .f .x//”

�
iff 8

�x
�
A � “'.f .x// ^  .f .x//”

�
.

For existential quantification, suppose Ult � “9y '.y; Œf �/”. us there is some Œg� 2 Ult where Ult �

8
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“'.Œg�; Œf �/”. By (a modified version of) the inductive hypothesis, this happens iff 8�x .A � “'.g.x/; f .x//”/,
and so clearly it follows that 8�x .A � “9y '.y; f .x//”/.

For the other direction, we need AC: for each x 2 K such that A � “9y '.y; f .x//”, let g.x/ witness this.
Otherwise, let g.x/ be any arbitrary element of Ax . e resulting function g D ¹hx; g.x/i W x 2 Kº witnesses
that Ult � “'.Œg�; Œf �/” and thus that Ult � “9y '.y; Œf �/”. a

2 • 3. Corollary
Any model is elementarily equivalent to any of its ultrapowers.

§2A. Elementary embeddings

We have actually a much stronger correspondence between truth in A and its ultrapowers, but to talk further about this
relation, we need the concept of an elementary embedding. e issue is that the two models of universes composed of
fundamentally different things, and so we can’t just compare them outright. Instead, we translate by a function.

2A • 1. Definition
Let � be a signature. Let A and B be first-order logic models for � . Let f W A! B be a function. f is an elementary
embedding iff for all formulas ' in the signature � and parameters a0; � � � ; an 2 A,

A � “'.a0; � � � ; an/” iff B � “'.f .a0/; � � � ; f .an//”.

Any elementary embedding will be an embedding just by considering the atomic formulas: x 2A y iff f .x/ 2B f .y/.
It should be obvious from this that any elementary embedding is injective: for x; y 2 A,

x ¤ y iff A � “x ¤ y” iff B � “f .x/ ¤ f .y/” iff f .x/ ¤ f .y/.
Elementary embeddings aren’t necessarily surjective, however, meaning that they are stronger than a mere embedding,
but weaker than a full isomorphism.

Elementary embeddings are crucial to the understanding of ultrapowers and inner models. Some of the basic facts are
not recorded because they are seen to be obvious. To better familiarize the reader with some of these basic facts, the
following extensively used results will be given explicit proofs.

2A • 2. Lemma
Let j W V! M be elementary with M � V a transitive class. erefore the following hold for all formulas '.

1. If ' is absolute betweenV andM, then '.x/ iff '.j.x//. Hence if x is defined by an absolute formula—meaning
y D x iff '.y/—then j.x/ D x.

2. If f is a function, then j.f / is a function, and j.f .x// D j.f /.j.x//.
3. If f; g are functions, then j.f ı g/ D j.f / ı j.g/.

Proof .:.
1. By elementarity, '.x/ iff M � “'.j.x//”. By absoluteness, this happens iff '.j.x//. Now if x is defined

by '—i.e. x D y iff '.y/—for some absolute formula ', then M � “'.j.x//”. By absoluteness, '.j.x//
so that x D j.x/.

2. Being an ordered pair is definable by a formula absolute between transitive models. So being a set of
ordered pairs, x 2 f implies x is an ordered pair. Elementarity then gives that every x 2 j.f / has that x
is an ordered pair. Moreover, f is a function iff 8x .9y hx; yi 2 f ! 9Šy hx; yi 2 f /, which is absolute
between transitive models. By elementarity,

M � “8x .9y hx; yi 2 j.f /! 9Šy hx; yi 2 j.f //”
By absoluteness, this holds in V so that j.f / is then a function.

Let x 2 dom.f / be arbitrary. f .x/ is the unique y such that hx; yi 2 f . Hence j.f .x// is the unique
y such that hj.x/; yi 2 j.f /. Hence j.f / is a function, and it obeys j.f /.j.x// D j.f .x// whenever
x 2 dom.f /.

9
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3. Following easily from (1), for all x and z, hx; zi 2 f ı g iff there is some y 2 f where hx; yi 2 g and
hy; zi 2 f . By elementarity, for all x; z, hx; zi 2 j.f ıg/ iff 9y .hx; yi 2 j.g/^hy; zi 2 j.f //, meaning
j.f ı g/ D j.f / ı j.g/. a

Often arguments like these will be written in shorthand, so it’s important to know what will be moved by j or won’t
be moved by j . For example, consider  D ¹˛ W ˛ < º. Note that j./ will generally not be ¹j.˛/ W j.˛/ < j./º:
˛ is a dummy variable that plays no role here, but  is still a parameter. So j./ D ¹˛ W ˛ < j./º (as expected).
Similarly, j.¹x W f .x/ D ˛º/ D ¹x W j.f /.x/ D j.˛/º, again, x is just a dummy variable, but f and ˛ aren’t.

Before heading too deep into this, however, we need to think about how we regard these elementary embeddings. As
functions from perhaps the entire universe of sets, they will not be sets. And a priori, there’s no reason to think they
need to be definable. To counter this issue, we will work in a relatively simple class theory, like NBG�GCCAC—von
Neumann–Bernays–Gödel class theory with choice for sets. In other words, we have V being the usual set-theoretic
universe adjoining predicates for classes ofV (whatever those happen to be, but at least including the definable classes).
One can show that this is a conservative extension of ZFC, meaning that no new theorems with quantifiers ranging over
sets are proven by NBG.

Obviously there is a kind of trivial elementary embeddings from V into an inner model: the identity map. is map
isn’t exactly interesting, however, and so we will be interested with maps that actually move sets. It turns out that if an
elementary embedding moves a set, then it moves an ordinal.

2A • 3. Result
Let j W V ! M be elementary with M � V a transitive class. Let ˛ 2 Ord. erefore j � ˛ D id � ˛ iff
j � V˛ D id � V˛ .

Proof .:.
Obviously j � V˛ D id � V˛ implies j � ˛ D id � ˛ since ˛ � V˛ .

For the other direction, in essence, the rank of x 2 V˛ is still preserved. For ˛ D ; and ˛ a limit, the result
clearly holds. For the successor case, we assume j � ˛ D id � ˛ and that j.˛/ D ˛. Let x 2 V˛C1. Hence
x � V˛ so by elementarity, j.x/ � VM

j.˛/
D V˛ \M since M is transitive. Now for any fixed y 2 V˛ , y 2 j.x/

inductively is equivalent to y D j.y/ 2 j.x/. So by elementarity, this is equivalent to y 2 x. us j.x/ D x, as
desired. a

2A • 4. Corollary
If j W V ! M is elementary into M � V a transitive class and j ¤ id, then the least ˛ with j.˛/ ¤ ˛ is also the
least rank of a set moved by j .

is motivates the following definition of a critical point, below which j is just the identity, and which is moved by j .
2A • 5. Definition

Let M � V be a transitive class of V with j W V! M elementary such that j ¤ id.
An ordinal ˛ is a critical point of j—denoted cp.j /—iff ˛ is the least ordinal where ˛ ¤ j.˛/.

If ˛ < � D cp.j / then by elementarity ˛ D j.˛/ < j.�/ so that j.�/ > �. So the first ordinal moved is always moved
up. is implies that nontrivial elementary embeddings will never be surjective: no ordinal ˛ with between j.�/ and
� (more precisely, � � ˛ < j.�/) is in the image of j .

On the topic of the identity embedding, there is a kind of ceiling to how close M � V can be to V when j W V ! M
is elementary. e following theorem tells us that in particular, M cannot be V. is is important for ruling out the
existence of reinhardt cardinals—the critical points of elementary embeddings from V into itself, rather than merely
an inner model. e proof of this theorem can only be given after we introduce the concept of measurable cardinals.

2A • 6. Theorem (Kunen's Inconsistency Theorem)
Let j W V! V elementary. erefore j D id.
More precisely, suppose M � V is a transitive class and j W V ! M, also a class of V, is elementary. erefore
j ¤ id implies M ¤ V.

10
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A nice property of elementary j fromV into classes ofV is that they will preserve P .cp.j //. In general, if j W N !M

is elementary between two transitive classes, there’s no guarantee that the powerset is preserved, and we’d only get
P .cp.j // \N � P .cp.j // \M .

2A • 7. Result
Let M � V be a transitive class. Let j W V! M be elementary with cp.j / D �.
erefore P .�/M D P .�/. In fact, V�C1 � M so that x � V� is just x D j.x/ \ V� .

Proof .:.
As M is transitive, P .�/M D P .�/ \M. Let x 2 P .�/ \ V . For every ˛, since x � �,

˛ 2 x iff j.˛/ 2 j.x/ ^ ˛ D j.˛/ < �,
Hence x D j.x/ \ � 2 P .�/ \M, and thus P .�/ � P .�/ \M. And since M � V, P .�/ \M � P .�/ \ V.

By Result 2A • 3, looking at j � V˛C1, j.V˛/ D V˛ for each ˛ < � so that
VM

� D
[
˛<�

VM
˛ D

[
˛<�

V˛ D V� .

us V� 2 M. Now consider x � V� . Since j � V� D id � V� again follows from Result 2A • 3, we have by
elementarity that y 2 j.x/ \ V� iff y 2 x, which means that j.x/ \ V� D x 2 M and thus V�C1 � M. a

Hence the “strength” of a non-trivial, elementary embedding j W V ! M is at least cp.j / C 1 in the sense that we
always have Vcp.j /C1 � M. It may be possibleiv for j to have a larger strength, but to do this, we would need extenders
rather than mere ultrafilters (this also motivates the notion of a strong cardinal). But now that we have thought about
elementary embeddings in general, let us return to the notion of an ultrapower.

§2B. Characterizing ultrapowers

With all of this talk about elementary embeddings, we should perhaps note that we always have an elementary embed-
ding from a model into its ultrapower.

2B • 1. Theorem
Let � be a signature. Let A be a first-order logic model for � , and let U be an ultrafilter over a set K. erefore A is
elementarily embedded in Ult.A; U / by x 7! Œconstx �U , where constx W K ! A is the constant x map.

Proof .:.
By Łoś’s eorem (2 • 2), Ult.A; U / � “'.Œconstx �/” iff for almost every k 2 K, A � “'.constx.k//” (i.e.
A � “'.x/”) which is just to say that the following set is in U :

¹k 2 K W A � “'.x/”º D

´
K if A � “'.x/”
; otherwise.

As an ultrafilter over K, ; … U and K 2 U so that Ult.A; U / � “'.Œconstx �/” iff A � “'.x/”. a

Note that for a proper class like V, each equivalence class Œf � 2 Ult.V; U / will be a proper class as well.v is can
be rectified if we just consider Œf � D ¹g W g � f ^ rank.g/ is minimalº. Doing this, we get the usual equivalence
class of f just intersected with some V˛ for ˛ least. Doing this, one still has that Œf � D Œg� for all f � g, and thus
x 7! Œconstx � is a legitimate (class) function. So the result above also holds with proper classes too under this variant
definition.

e existence of such an elementary embedding, however, doesn’t tell you that it’s nontrivial.
iv is consistency of this can't be proven in ZFC alone, as such embeddings yield the existence of certain large cardinals, which in turn imply the

consistency of ZFC.
vTo see this, let v 2 V be arbitrary. As U is an ultrafilter over K, let X 2 U be such that X ¤ K so that there is some x 2 K n X . Now for

any v 2 V, consider fv to be the map sending every y 2 K to x except for x itself, which is sent to v, i.e. fv D .constx n¹hx; xiº/ [ ¹hx; viº.
Note that 8y 2 X .fv.y/ D constx.y// so that fv 2 Œconstx�. Also note that fv ¤ fv0 for v ¤ v0 2 V so that Œconstx� is a proper class.

11
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2B • 2. Result
Let U be a principal ultrafilter over a set K. erefore A Š Ult.A; U / by the canonical embedding.

Proof .:.
It suffices to show that the canonical embedding of eorem 2B • 1 is surjective. Let u 2 Ult.A;U / be arbitrary.
We know that u D Œf � for some f W K ! A. As U is principal, there is some a 2 A where ¹aº 2 U . Hence
g � f iff g.a/ D f .a/. In particular, u D Œconstf .a/�. Hence x 7! Œconstx � is a bijective embedding, and thus
an isomorphism. a

As the transitive collapse of a well-founded structure is unique, it follows that the collapsed version of the ultrapower
Ult.V; U / (if well-founded) is preciselyV, and it’s not difficult to show inductively that in this case, Œconstx � is collapsed
to x.

e importance of using ultrapowers, however, is when they are well-founded, because set theory in general is more
concerned with transitive models. Transitive models are easier to work with, and are related to the actual universe
of sets. Hence studying transitive models allows us to learn about the actual set-theoretic universe—though perhaps
only conditional on large cardinal assumptions or other hypotheses. Well-founded models that satisfy extensionality
are just an isomorphism away from transitive models by a mostowski collapse. In general, not all ultrapowers will be
well-founded. Crucially, if we can take countably many conjunctions, then the ultrapower must be well-founded: we
can collect together the countable amount of information that f0 3 f1, and f1 3 f2, and so on all at once. It’s nice
that we then have a characterization of the ultrapower being well-founded.

2B • 3. Theorem
Let U be an ultrafilter in V. erefore Ult.V; U / is well-founded iff U is ℵ1-complete.

Proof .:.
( ) Suppose U is ℵ1-complete, but Ult D Ult.V; U / is ill-founded. Let hfn W n 2 !i 2 V be one such

descending 2Ult-sequence in Ult: for every n 2 !, Ult � “ŒfnC1� 2 Œfn�”. As U is ℵ1-complete in V,

V � “
^
n2!

8
�˛ .fnC1.˛/ 2 fn.˛//” iff V � “8�˛

 ^
n2!

fnC1.˛/ 2 fn.˛/

!
”.

But any such ˛ yields an infinite, decreasing sequence hfn.˛/ W n 2 !i in V, contradicting foundation.

(!) Now suppose Ult.V; U / is not ℵ1-complete. Let ¹Xn W n 2 !º 2 P .U / with
T

n2! Xn … U . From this,
we will construct an infinite, decreasing 2Ult-sequence in Ult, contradicting foundation. Without loss of
generality, assume Xn � XnC1 just by replacing each Xn with

T
i�nXi . Without loss of generality, U is

an ultrafilter over a cardinal �.

For each ˛ < �, let index.˛/ be the least n for which ˛ … Xn. If there is no such n, then write index.˛/ D 0.
For each n 2 !, define the function fn W � ! ! by taking, for ˛ < �,

fn.˛/ D

´
index.˛/ � n if index.˛/ � n
0 otherwise.

So in essence, hfn.˛/ W n 2 !i will start at index.˛/ and decrease by 1 until it is eventually, constantly 0.
As a result, if ˛ 2 Xn, then index.˛/ > n and so fn.˛/ > fnC1.˛/. As almost every ˛ is in Xn, it follows
that 8�˛ .fn.˛/ > fnC1.˛//. So for each n 2 !, Ult � “Œfn� 2 ŒfnC1�”. Consequently, hŒfn� W n 2 !i is
a decreasing 2Ult-sequence, meaning Ult is ill-founded. a

Of course, this doesn’t say that Ult.V; U / or V is necessarily actually well-founded, just that if V is well-founded—if
we start from a well-founded class—then we still remain well-founded after taking the ultrapower. You might think
that this result is obvious, since if Ult.V; U / is a class of V, and V thinks itself is well-founded, surely it must think this
class is too. But the issue is the difference in interpretation of ‘2’. If Ult.V; U / is well-founded, then we can identify
it with a transitive class of V, but otherwise, it’s just some structure whose universe is a class of V.

12
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2B • 4. Definition
Let U be an ℵ1-complete ultrafilter. Define cUlt.V; U / be transitive collapse of Ult.V; U / via �U . Set jU W V !
cUlt.V; U / to be the canonical embedding: jU .x/ D �U .Œconstx �/.

is doesn’t inherently tell us that this (collapsed) ultrapower is different from V, however, which was more obviously
the case when U was principal. If V has no measurable cardinals, it will turn out that V has no ℵ1-complete ultrafilters,
as such ultrafilters will actually be �-complete for some (maximal) � that turns out to be a measurable cardinal.vi

e notion of completeness is also important as it determines the critical point of the canonical embedding.
2B • 5. Theorem

Let U be a non-principal ultrafilter over K that is �-complete, but not �C-complete for some cardinal � > ℵ0. Let
j W V! cUlt.V; U / be the canonical embedding. erefore, j ¤ id and cp.j / D �.

Proof .:.
Let � W Ult.V; U /! cUlt.V; U / be the collapsing isomorphism. First we show that j � � D id � �. To see this,
suppose inductively that j � � D id � � for some � < �. We aim to show j.�/ D �. By elementarity and the
inductive hypothesis, ˛ 2 � iff j.˛/ D ˛ 2 j.�/ so that j.�/ � �. So it suffices to show �.Œconst� �/ D j.�/ � �.

So let � < j.�/ be arbitrary. � can be represented in the ultrapower by some f W K ! V: � D �.Œf �/. Since
Ult.V; U / � “Œf � < Œconst� �”, it follows that

8
�x .f .x/ < const�.x// iff 8

�x .f .x/ < �/ iff 8
�x

0@_
"<�

f .x/ D "

1A .

Suppose for each " < � that :8�x .f .x/ D "/ iff 8�x .f .x/ ¤ "/. As � < �, by �-completeness,

8
�x

0@^
"<�

f .x/ ¤ "

1A iff 8
�x

0@:_
"<�

f .x/ D "

1A iff 8
�x .f .x/ 6< �/,

a contradiction. Hence there must be some " < � where 8�x .f .x/ D " D const".x//. For this ", we then have
Ult.V; U / � “Œf � D Œconst"�” so after collapsing, � D �.Œf �/ D j."/ D " < � . is shows j.�/ � � and thus
equality.

To see that j ¤ id, it suffices to show j.�/ > �. is also shows that cp.j / D �, since we already know
j � � D id � �. To do this, we find a function f W K ! � sitting between every Œconst˛� and Œconst� � in the
ultrapower. To construct f , proceed as follows. AsU is not �C-complete, let hX˛ W ˛ < �iwitness this: X˛ 2 U

for each ˛ < �, but
T

˛<� X˛ … U . By subtracting this intersection we can assume without loss of generality thatT
˛<� X˛ D ;. Furthermore, by using �-completeness, each

T
�<˛ X� 2 U so we can without loss of generality

obtain a sequence where X˛ � Xˇ 2 U for ˇ < ˛ < �. Consider the map f W K ! � sending x 2 K to the
least ˛ < � with x … X˛ . Now consider Œf � in the ultrapower.

Note that for each ˛, almost every x 2 K is in X˛ . In particular, for any fixed ˛, almost every x 2 K has
f .x/ > ˛. So in the ultrapower, for each ˛ < �, Ult.V; U / � “Œf � > Œconst˛�” so in taking the transitive collapse,
�.Œf �/ > j.˛/ D ˛. In particular, �.Œf �/ � �. But clearly, as f is a function from K to �, 8�x .f .x/ <

const�.x// and therefore Ult.V; U / � “Œf � < Œconst� �”, meaning �.Œf �/ < j.�/. Hence � � �.Œf �/ < j.�/ so
that cp.j / D �. a

We now aim to prove two main theorems about ultrapowers dealing with how we can factor embeddings through
ultrapowers, and howwemay represent the elements of ultrapowers. e idea is that an arbitrary elementary embedding
j W V! M can be coded through an ultrafilter Uj over cp.j / and thus through the ultrapower.

To derive an ultrafilter from j , note that for � D cp.j /, most subsets of � will be shot up beyond � in the sense that
A � � will likely have j.A/ be unbounded in j.�/ > �. In this sense, j.A/ will have many more elements above
those in A. e key thing for us is whether � is in this stretched version of A, j.A/. is clearly is answerable for any

vi is can be proven just by translating the ultrafilter U to a separate ultrafilter on � according to how elements disappear from a �-length
�-decreasing sequence of elements of U .
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V M

Ult.V; Uj /

j

jUj

˚
k

2B • 6. Figure: Factoring through the ultrapower embedding

given subset of A, and by elementarity, will be preserved under the necessary operations.
2B • 7. Definition

Let M � V be a transitive class. Let j W V! M be elementary with cp.j / D �. Define the ultrafilter derived from
j to be Uj D ¹A � � W � 2 j.A/º.

As described above, it’s not difficult to see that Uj is an ultrafilter. More importantly, Uj is actually a measure over �.
2B • 8. Result

Let M � V be a transitive class. Let j W V! M be elementary with cp.j / D �. us Uj is a measure in V over �.
(Moreover, the club filter Club� � Uj .)

Proof .:.
at Uj is an ultrafilter is easy enough to see as j is elementary: for A � � in V, A … Uj iff � … j.A/ iff

� 2 j.�/ n j.A/ D j.� n A/ iff � n A 2 Uj .
• Uj is easily seen to be non-principal. Otherwise, for some ˛ < �, we’d have ¹˛º 2 Uj and hence � 2
j.¹˛º/. By elementarity of j , j.¹˛º/ has just one element: j.˛/ D ˛ ¤ �, a contradiction.

• For �-completeness, consider ¹A˛ W ˛ < �º � Uj in V for � < �. Since � 2 j.A˛/ for each ˛ < �,
� 2

T
˛<� j.A˛/. Now since � < �, j.�/ D � and hence

� 2
\
˛<�

j.A˛/ D
\

˛<j.�/

j.A˛/ D j
�T

˛<�A˛

�
.

• To show that Uj is normal, let f W � ! � be such that 8�˛ .f .˛/ < ˛/. is means
� 2 j.¹˛ < � W f .˛/ < ˛º/ D ¹˛ < j.�/ W j.f /.˛/ < ˛º

and thus j.f /.�/ < �. So there is some ˇ < � with j.f /.�/ D ˇ D j.ˇ/ and hence 8�˛ .f .˛/ D ˇ/.
Uj extends the club filter, since being a club is a first-order property. Hence C 2 Club� has j.C / containing a
club of j.�/. Since C � �, C D j.C / \ �, which contains a club of �. As j.C / is closed, � D supC 2 j.C /.
is means that C 2 Uj and thus Club� � Uj . a

is actually proves the earlier claim of Figure 1D • 3: ifU is a �-complete ultrafilter over �, then j W V! cUlt.V; U /
has cp.j / D � and thus its derived ultrafilter Uj is a measure over �.

2B • 9. Theorem (Factoring)
Let M � V be a transitive class. Let j W V! M be elementary with cp.j / D �.
Let Uj be the derived ultrafilter, and let jult W V! Ult.V; Uj / be the canonical ultrapower embedding.
erefore there is a (unique) elementary k W Ult.V; Uj /! M such that j D k ı jult and k.Œf �Uj

/ D j.f /.�/.

Proof .:.
Write Ult for Ult.V; Uj /. For each Œf �, define k.Œf �/ D j.f /.�/. Note that this is independent on the choice
of f , since if 8�˛ .f .˛/ D g.˛//, then by definition of Uj , � 2 ¹˛ < j.�/ W j.f /.˛/ D j.g/.˛/º and so
k.Œf �/ D j.f /.�/ D j.g/.�/ D k.Œg�/. Note also that j D k ı jult, since k ı jult.x/ D k.Œconstx �/ D
j.constx/.�/ D constj.x/.�/ D j.x/.

To see that k as defined is elementary, let '.x/ be a formula and suppose Ult � “'.Œf �/” for some Œf � 2 Ult. By
Łoś’s eorem (2 • 2), this happens iff 8�˛ '.f .˛//. By definition of Uj , this means � 2 j.¹˛ < � W '.f .˛//º/,
i.e. M � “'.j.f /.�//”. Rewritten, this says M � “'.k.Œf �//”. us k is elementary. a
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ere are a number of corollaries to this. Firstly, we have a nice theorem of how we can break down ultrapowers.
2B • 10. Lemma

Let U be a measure over �. erefore �.Œid � ��/ D � and UjU
D U .

Proof .:.
• We know from Łoś’s eorem (2 • 2) that Ult.V; U / � “Œid � �� > Œconst˛�” for each ˛ < �. Hence in the
collapse (as � is the critical point), cUlt.V; U / � “�.Œid � ��/ > ˛” for each ˛ < � and thus �.Œid � ��/ �
�. To show that �.Œid � ��/ � �, we appeal to normality.

Let ˛ < �.Œid � ��/ be arbitrary. erefore, by Łoś’s eorem (2 • 2), 8�ˇ .const˛.ˇ/ < ˇ/. So applying
normality to const˛ , we get that there must be some particular  < � where 8�ˇ .const˛.ˇ/ D  D

const .ˇ// so that Œconst˛� D Œconst � and thus ˛ D  < �. erefore �.Œid � ��/ � �, and hence equal.

• It suffices to show that A 2 U iff � 2 jU .A/. Rewritten, A 2 U says 8�˛ .˛ 2 constA.˛// which is
equivalent to Ult.V; U / � “Œid � �� 2 ŒconstA�”, meaning �.Œid � ��/ D � 2 jU .A/. a

is has the consequence of showing a trivial version of the factor lemma when M is the ultrapower by a measure. But
this allows us to think about the ultrapower and the “M” in the same way.

2B • 11. Corollary
Let U be a measure over �. erefore cUlt.V; U / D ¹jU .f /.�/ W f 2

�Vº.

Proof .:.
Let j W V ! cUlt.V; U / be the canonical ultrapower embedding. By Factoring (2B • 9), there is a unique,
elementary k W Ult.V; Uj /! cUlt.V; U / which obeys k.Œf �Uj

/ D j.f /.�/. Since Uj D U by Lemma 2B • 10,
cUlt.V; Uj / D cUlt.V; U / so that k must just be the collapsing isomorphism. Hence every element of cUlt.V; U /
can be represented in this way. a

A slight generalization of this can be used for U that are merely �-complete and not actually measures. e argument
just replaces � with Œid � ��. In fact, Corollary 2B • 11 is equivalent to a �-complete ultrafilter U being normal.

2B • 12. Theorem
Let M � V be a transitive class. Let j W V! M be elementary with cp.j / D �. erefore, there is some ultrafilter
U where M D Ult.V; U / with j as the canonical embedding iff there is some s 2 M where

M D ¹j.f /.s/ W f 2 �Vº.

Proof .:.
Suppose M D cUlt.V; U / with j as the canonical embedding. Set s (the seed) to be �U .Œid � ��/ where
�U W Ult.V; U /! cUlt.V; U / is the collapsing map. We know already that M D ¹�U .Œf �U / W f 2

�Vº so for
�U .Œf �U / 2 M arbitrary, it suffices to show that �U .Œf �U / D j.f /.s/. Note that 8�˛ .f .˛/ D f .˛//. We can
think of f .˛/ as coming from the map ˛ 7! f .˛/ or coming from the map ˛ 7! .constf .˛//.id.˛//. Using these
two interpretations, by Łoś’s eorem (2 • 2), we have that Ult.V; U / � “Œf � D Œconstf �.Œid � ��/”, meaning that
in the collapse, recallling that j.x/ D �U .Œconstx �/,

�U .Œf �/ D �U

�
Œconstf �.Œid � ��/

�
D �U .Œconstf �/

�
�U .Œid � ��/

�
D j.f /.s/.

Now suppose there is some s 2 M with M D ¹j.f /.s/ W f 2 �Vº. Consider the ultrafilter U D ¹A � � W

s 2 j.A/º. As in Result 2 B • 8, U can be easily shown to be an ultrafilter (by elementarity), and �-complete (by
elementarity and that cp.j / D �). As in Factoring (2B • 9), consider the map k W Ult.V; U / ! M defined by
k.Œf �U / D j.f /.s/. To see that this is well defined, note that Œf �U D Œg�U means8�˛ .f .˛/ D g.˛// implying
s 2 j.¹˛ < � W f .˛/ D g.˛/º/ so that s 2 ¹˛ < j.�/ W j.f /.˛/ D j.g/.˛/º and thus j.f /.s/ D j.g/.s/.

is k is elementary by the same reasoning as in Factoring (2B • 9):
Ult.V; U / � “'.Œf �U ” iff 8

�˛ '.f .˛//

iff s 2 j.¹˛ < � W '.f .˛//º D ¹˛ < j.�/ W M � “'.j.f /.˛//”º

15
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iff Μ � “'.j.f /.s//”.
is implies k is injective and an embedding. So k is actually an ismorphism since it’s clearly surjective: M D
¹j.f /.s/ W f 2 �Vº allow us to merely consider k.Œf �U / D j.f /.s/ for any f W � ! V. Hence cUlt.V; U / D
M and by uniqueness, k is just the collapsing isomorphism, meaning j is the canonical ultrapower embedding.a

As stated before, the s D �U .Œid � ��/ being � is equivalent to normality for �-complete ultrafilters over � > ℵ0.
2B • 13. Result

Let U be a non-principal, �-comlete ultrafilter over � > ℵ1. Let �U W Ult.V; U / ! cUlt.V; U / be the collapsing
isomorphism. erefore U is normal iff �U .Œid � ��/ D �.

Proof .:.
Let j W V ! Ult.V; U / be the canonical embedding which then has cp.j / D �. Since U is �-complete, it’s
clearly unbounded and thus 8�˛ .˛ > ˇ/ for each ˇ. Restated, this says Ult.V; U / � “Œid � �� > Œconstˇ �” for
each ˇ < �. So after collapsing,

�U .Œid � ��/ � ¹�U .Œconstˇ �/ W ˇ < �º D ¹j.ˇ/ W ˇ < �º D �.
Note that a function f being regressive on a set in U is equivalent to 8�˛ .f .˛/ < ˛/, meaning Ult.V; U / �
“Œf � < Œid � ��”. us �U .Œid � ��/ D ¹�U .Œf �/ W f is regressive on a set in U º.

So suppose U is normal. Note that every regressive function f W � ! � has some ˇ < � where Œf � D Œconstˇ �
and thus �U .Œf �/ D �U .Œconstˇ �/ D j.ˇ/ D ˇ. erefore �U .Œid � ��/ � �, and so we have equality.

Now suppose �U .Œid � ��/ D �. us every element of �U .Œid � ��/ is an ordinal less than �, meaning that
every regressive function f W � ! � has �U .Œf �/ D ˇ D �U .Œconstˇ �/ for some ˇ < �. So Œf � D Œconstˇ � and
thus 8�˛ .f .˛/ D ˇ/, meaning U is normal. a

§2C. Properties of ultrapowers

Sowe have ultrapowers, andwe knowwhat they look like thanks to eorem 2B • 12. What are some of their properties,
however? e main goal of this subsection is now to look at what happens with the critical point of the ultrapower
embedding: Where is it sent? How close can the ultrapower be to V? What are the combinatorial effects of taking an
ultrapower? A complete answer to these questions won’t be given here (if there even is such an answer). Instead, we
will consider the following results.

2C • 1. Result
Let U be a measure on �. Let j W V! cUlt.V; U / be the canonical embedding. erefore,

1. cUlt.V; U / is closed under �-length sequences, meaning � cUlt.V; U / � cUlt.V; U /.
2. cUlt.V; U / and V agree up to � C 1, meaning V�C1 � cUlt.V; U / but V�C2 6� cUlt.V; U /;
3. P .�/ D P .�/ \ cUlt.V; U /;
4. U … cUlt.V; U /; and
5. j.�/ is not a cardinal of V: � < 2� � .2�/cUlt.V;U / < j.�/ < .2�/C.

To prove these from the ground up, we need some results about measurable cardinals which we have not introduced
yet. Instead, just assume the following lemma.

2C • 2. Lemma
Let � have a measure U over it. erefore, � is strongly inaccessible.

Proof .:.
� is regular by �-completeness of its measure. � is uncountable by elementarity of j . To show that � is a strong
limit, suppose not, and let � < � have 2� � �.

So consider family ƒ � P .�/ be of size jƒj D �. Take a corresponding ultrafilter W � P .ƒ/ with U and the
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bijection with �. is W , however, will not be �-complete, contradicting that U is. To see this, for each ˛ < �,
consider

X˛ D

´
¹x 2 ƒ W ˛ 2 xº if this is in U
¹x 2 ƒ W ˛ … xº otherwise.

By construction, X˛ 2 U for all ˛ < �. e intersection of all these, by �-completeness of U , is in W . ButT
˛<�X˛ is a single subset of �, contradicting nonprincipality. a

Proof of Result 2 C • 1 .:.
To save space, write M D cUlt.V; U / and Ult D Ult.V; U / with � W Ult! M the collapsing isomorphism.

1. Let Ex D hx˛ 2 M W ˛ < �i be a �-length sequence (in V). Represent x˛ D �.Œf˛�/ for f˛ W � ! V.
Consider the sequence (also in V) Ef D hf˛ W ˛ < �i. Now we consider j. Ef /. By elementarity, j. Ef / is a
sequence of length j.�/. Moreover, for every ˇ < �, 8�˛ . Ef .ˇ/.˛/ D fˇ / so by Łoś’s eorem (2 • 2),

Ult � “Œconst Ef
�.Œconstˇ �/ D Œfˇ �” iff j. Ef /.ˇ/ D �.Œconst Ef

�/.�.Œconstˇ �// D �.Œfˇ �/ D xˇ .

us j. Ef / � � D Ex. As �; j. Ef / 2 M, it then follows that Ex 2 M.
2. is follows by Result 2A • 7 and (4) below.
3. is follows by Result 2A • 7.
4. Every ˛ < j.�/ has a represenation Œf � in Ult which then obeys 8�ˇ .f .ˇ/ < const�.ˇ//, meaning we

can assume without loss of generality that f W � ! �. So let F W �� ! j.�/ be the surjective map
f 7! �.Œf �/. Suppose U 2 M so that for any f 2 .��/M D ��, we can form Œf � and thus the map F
within M. Hence M � “� < j.�/ � �� D 2�”, contradicting Lemma 2C • 2 since by elementarity, j.�/ is
also strongly inaccessible.

5. By (3), 2� � .2�/M. We of course know � < 2� by Cantor’s theorem. We have j.�/ > .2�/M because � is
a strong limit in V so that j.�/ is a strong limit in M. We have j.�/ < .2�/C since the argument given in
(4) tells us that there’s a surjection from �� D 2� to j.�/ in V. a

Now all of this has been a kind of coded way of talking about measurable cardinals by way of their measures.

§2D. Measurable cardinals

Although we have mentioned measurable cardinals before, they should be given a formal introduction. Measurable
cardinals are important for their two equivalent characaterizations: having a measure, and being the critical point of
an elementary embedding. Measurable cardinals will be quite large, and their importance is partly for the ultrapowers
mentioned in the rest of this section, but also in motivating a canonical inner model LŒU � to be introduced later.

2D • 1. Definition
A cardinal � > ℵ0 is measurable iff there is a non-principal, �-complete ultrafilter over �.

Note that by the results above, there are several different characterizations of this.
2D • 2. Result

Let � � ℵ0 be a cardinal. erefore, the following are equivalent:
1. � is measurable, i.e. � > ℵ0 has a non-principal, �-complete ultrafilter over it.
2. � has a measure over it.
3. � is the critical point of an elementary j W V! M, where M is a transitive class of V.

Proof .:.
Clearly (2) implies (1) with the only thing to check being that � is uncountable. But normality implies this:
suppose � D ℵ0 with U a measure over ℵ0. Consider f W ! ! ! defined by f .0/ D 0 and f .n/ D n � 1 for
n > 0. As f .n/ � n iff n D 0, it follows by uniformity that 8�n .f .n/ < n/. So by normality, there is some
m < ! where 8�n .f .n/ D m/. But f �1.m/ � ¹m;mC 1º … U by uniformity. erefore � ¤ ℵ0.
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So suppose (1) holds: � is measurable as witnessed by U . erefore Ult.V; U / is well-founded since � � ℵ1:
�-completeness implies ℵ1-completeness. Hence the canonical embedding j W V! cUlt.V; U / has cp.j / D �

by eorem 2B • 5 showing (3).

If (3) holds, the derived ultrafilter Uj is a measure on � by Result 2 B • 8, yielding (2). a

is equivalence of measurability and being a critical point is an important one in the sense that each characterization
has various corollaries, and when combined they give a clearer picture of measurable cardinals. Consider the following
consequences, for example, showing just how large measurables need to be. We already know that just one inaccessible
goes beyond what ZFC can prove. In fact, the consistency of just any number of inaccessibles can’t be proven relative
to the consistency of any fewer number of them. Now consider how strong the existence of measurables is.

2D • 3. Corollary
Let � be measurable. A cardinal � ismahlo iff ¹� < � W � D j� j is inaccessibleº is a stationary subset of �. erefore

1. � is strongly inaccessible by Lemma 2C • 2;
2. � is the �th (strongly) inaccessible cardinal;
3. � is the �th mahlo cardinal;
4. � has a measure by Result 2D • 2; and
5. � has a measure that extends the club filter Club� by Result 2 B • 8.

Proof .:.
Let U be a measure on �, and let j W V! M be elementary with M � V a transitive class.

2. Note that a cardinal � being strongly inaccessible is downward absolute. So if � is strongly inacces-
sible in V, then it is in M, meaning that M thinks that j.�/ has an inaccessible below it: �. So for
each ˛ < �, M � “9x.x is inaccessible and ˛ < x < j.�//”. So by elementarity, for each ˛ < �,
V � “9x.x is inaccessible and ˛ < x < �/”. So the set of inaccessible cardinals below � is unbounded
in �. As � is regular, � is the �th inaccessible.

3. Firstly, to see that � is mahlo, take j W V ! M � V elementary with cp.j / D �. For any club
C � �, j.C / � j.�/ is also club, and since C D j.C / \ �, it follows that � 2 j.C / and thus
M � “j.C / has an inaccessible member”. By elementarity and absoluteness, C has an inaccessible mem-
ber so that the set of inaccessibles below � is stationary and � is mahlo.

� is still mahlo in M, since P .�/ D P .�/ \ M meaning that M contains every club of � as well as the
stationary set of inaccessibles above. Hence being a stationary subset of � is absolute between M and V.
us the above j.C / contains a mahlo cardinal in M. By elementarity, C contains a mahlo cardinal in V,

and thus the set of mahlos below � is stationary, and thus � is the �th mahlo cardinal. a

One might be tempted to apply the reasoning of Corollary 2D • 3 to the property of being measurable, which would
seem to indicate that any measurable cardinal � would need to be the �th measurable cardinal, or it seems at least there
can’t be a least measurable. To simplify the issue, let � be the least measurable cardinal, and let j W V ! M � V be
elementary. It would seem that j.�/ has a measurable below it, and thus � does too, contradicting that � is the least
measurable. e issue is that � might not be measurable in M, because we’ve thinned out the universe to M � V such
that it no longer contains a measure, as seen in Result 2 C • 1.

Moreover,M, being the collapsed ultrapower, has further properties that present limitations on the kinds of embeddings
that can be realized by ultrapowers. e properties of being inaccessible, mahlo, and so forth could be used with the
above reasoning, since they deal only at the level of V� and V�C1, but issues creep in if we try going beyond this, like
the statement of being measurable. is is again a result of the agreement between the ultrapower and V as seen in
Result 2 C • 1.

Now despite the fact that the reasoning of Corollary 2D • 3 breaks down when we try to apply them to the property of,
for example, being measurable, the reasoning does apply when V D L. is is because of L being the smallest inner
model: cUlt.V; U / D V D L which forces M to still recognize � as measurable.
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2D • 4. Theorem (L Has No Measurable Cardinals)
Let � be measurable. erefore V ¤ L.

Proof .:.
Without loss of generality, let � be the least measurable cardinal, and assume V D L. By Result 2D • 2, there is
an elementary embedding j W L! M with a transitive class M � L. By elementarity,

M � ZFCC “V D L”C “j.�/ is the least measurable”.
Condensation implies M D L, and thus the two agree on �: M � “� is the least measurable”, which contradicts
that � is the critical point of j : � ¤ j.�/. a

is is a relatively easy proof due to condensation, but there is a more complicated proof due to a more general result.
2D • 5. Theorem (Kunen's Inconsistency Theorem)

Let j W V! V be elementary (as a class of V). erefore j D id.

Proof .:.
Assume j ¤ id. By Result 2A • 3, there is some critical point � D cp.j /. By repeatedly applying j , we get
the sequence hj n.�/ W n 2 !i. Let � D supn2! �n. By applying j to the sequence, by elementarity, we get that
j.hj n.�/ W n 2 !i/ D hj nC1.�/ W n 2 !i, and that j.�/ D supn2! j

nC1.�/ D � . As a fixed point of j , this is
good. Unfortunately, � isn’t regular. So instead consider the next cardinal, which by elementarity is also fixed:
j.�C/ D j.�/C D �C.

As �C is regular, consider the stationary subset of ordinals with cofinality !: S D S�C

! D ¹˛ < �C W cof.˛/ D
!º. is can be closed under fix-points of j , since j.˛/ D sup.j "˛/ for cof.˛/ < cp.j /. e resulting set is also
unbounded since j "�C D �C. What this means is that

C D ¹˛ < �C
W cof.˛/ D ! ^ j.˛/ D ˛º

is almost a club. In particular, CC—the closure of C under all sequences—is club in �C with no new elements
of cofinality !. As a result, any stationary subset of S will intersect C .

But any stationary set of �C may be partitioned into �C stationary subsets. In particular, we can consider subsets
S˛ � S for ˛ < �—just take the union of S0 with the guaranteed S˛ for � � ˛ < �C and make this the new
S0—where all the S˛s are stationary and pairwise disjoint. Applying j , we get another sequence, this time of
length j.�/, of pairwise disjoint, stationary subsets of �C: hZ˛ W ˛ < j.�/i D j.hS˛ W ˛ < �i/. By the above
ideas on CC, Z� \C

C ¤ ;. So there is some element � 2 Z� \C
C. As the S˛s partition S , there is also some

˛ < � with � 2 S˛ \ C
C. But then � D j.�/ 2 j.S˛/ D Zj.˛/. As ˛ < � D cp.j /, j.˛/ D ˛, yielding that

Z˛ \Z� ¤ ;, a contradiction. a

It’s a good exercise to see where this proof breaks down for elementary j W V! M for M ¨ V a transitive class. Note
that this doesn’t say that there can be no (non-trivial) j W V! V for V D L, for example, just that no j can exist as a
class of V in this case.
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